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Abstract
Recent experiments on Ir under pressure (Cerenius and Dubrovinsky 2000
J. Alloys Compounds 306 26) show a transition to a superlattice structure
comprising 14 atomic layers. This observation has implications for high-
pressure applications since Ir, with its high bulk modulus and high thermal
stability, is ideally suited for use as a gasket for high-temperature, high-
pressure diamond anvil cell experiments. We perform first-principles total
energy calculations to study the crystal phases and defect structures of Ir under
pressure. We have extended the bond-orientation model (Chetty and Weinert
1997 Phys. Rev. B 56 10844) to compute all of the ∼2N defect structures as
a function of atomic volume. We find Ir in the FCC structure to be extremely
stable for pressures up to about 60 GPa. We also calculate the stacking fault
energies of Ir.

1. Introduction

Iridium, being a central 3rd-row transition metal, has a relatively high bulk modulus and is
therefore ideally suited for use as a high-pressure gasket. The stability of this FCC material
under pressure is therefore of interest. The precise knowledge of the structure under pressure
is needed if the gasket is to be used to calibrate a high-pressure device such as a diamond anvil
cell.

A bulk modulus of 306 GPa has recently been measured for Ir [1], although a value as
high as 355 GPa [3] has been reported. This value is more than 1.5 times the bulk moduli of
the 1st-row transition metals and more than 50% that of diamond.

The sequence of ground-state structures across the transition metal rows, in general, is
mainly due to the increase in the electron filling of the d-band. Also, the pressure-induced
phase transition of transition metals is generally understood to be due to the transfer of electrons
from the s- to the d-band. The relative incompressibility of Ir metal is as a result of the high
promotional energies from the s- to d-band.
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Ir has an extremely high thermal stability, having the capacity to maintain structural and
mechanical stability at temperatures in excess of 1600 ◦C, which makes it useful for high-
temperature and high-pressure diamond cell experiments [4]. It is the metal of choice for use
in high-temperature crucibles, thermocouples and encapsulators of nuclear-powered electrical
generators in space technology. Ir is also not easily susceptible to corrosion, which makes it
ideal for a host of ‘clean’ applications such as resistive heating experiments [1].

Ir has been the subject of study over recent years, with most investigations focussing on
surfaces (see for example [5–8]). There are limited studies of the bulk metal and defects. For
example, Ivanov et al [9] constructed an empirical potential based on the work by Greenberg
et al [10], with which they studied elastic properties, phonon spectra, vacancies, interstitials,
dislocations and stacking defects. However, despite the efforts at empirically modelling the
system, the errors, for example in the intrinsic stacking fault [10], are still unacceptably high.
Insofar as first-principles total energy calculations of the bulk are concerned, there appears to
be a dearth of information available. Heid et al [11] have used a first-principles pseudopotential
mixed-basis method to calculate the phonon dispersions and elastic constants for Ir with good
agreement with experiment.

Recent experiments [1] on Ir at high pressure indicate a transition to a superlattice structure
comprising 14 atomic layers. This has important implications for high-pressure applications.
Both theoretical and further experimental investigations are needed to study Ir under pressure.
In our work we investigate, using first-principles total energy methods, the possible high-
pressure phases of Ir.

2. Bulk properties

We employ the plane wave pseudopotential method within the local density approximation.
The Kohn–Sham equations [12] are solved selfconsistently using the pre-conditioned steepest
descent method [13]. The electronic states are occupied using a Fermi distribution function
with a thermal broadening of 0.001 hartree. The additional degree of freedom that arises in
the determination of the occupation numbers results in an entropy-like term that is included to
maintain the overall variational nature of the total energy functional [14]. The charge density
is mixed using a Broyden [15] scheme.

We use the Kleinman–Bylander separable non-local pseudopotential based on the
Troullier–Martins construction [16, 17]. The pseudopotential core radii (in Bohr) are chosen
to be rs = 2.41, rp = 3.14 and rd = 1.15. The � = 0 component of the pseudopotential is
chosen as local component. Starting with unit vectors with small random components as the
initial guess to the wavefunctions, we attain selfconsistency to better than 10−7 hartree.

The Monkhorst–Pack special points technique [18] is used and the point group symmetry
of the lattice is exploited to reduce the number of independent wavevector points in the Brillouin
zone. For the one atom per cell FCC, we consider 110 special k-points in the irreducible part
of the Brillouin zone which corresponds to a sampling of 4000 points in the entire zone.

The equilibrium lattice constant is found to be 3.85 Å, the bulk modulus 385 GPa
and cohesive energy 10.23 eV, at an energy cut-off for the plane wave expansion of the
wavefunctions of 100 Ryd. In table 1, our theoretical results are listed against known other
results—both experimental and theoretical.

3. High-pressure studies

3.1. Experimental results

Recent experimental high pressure studies of Ir [1], using a diamond anvil cell, have indicated
an unusual transition to a 14-layer supercell structure at pressures in excess of 60 GPa.
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Table 1. Reference, lattice constant a0 in Bohr, cohesive energy Ec in eV, bulk modulus B in GPa.

References a0 Ec B

This work at 50 Ryda 3.85 9.35 402
This work at 70 Ryd 3.85 9.58 399
This work at 100 Ryd 3.85 10.23 385

Plane wave pseudopotential method, [19] 3.86 — 420
Full-potential LMTO method, [20] 3.81 10.31 —
Experimental, [1] 3.84 — 306
Experimental, [21] 3.83 — —
Experimental, [3] — 6.94 355

a Energy cut-off for the plane wave expansion of the wavefunction.

X-ray diffraction spectra show a substantial increase in the intensity of the (111) peak of
Ir, accompanied by a distinct saw-tooth pattern at pressures above 60 GPa. Despite the fact
that the intensities of the saw-tooth pattern are relatively low, these experimentalists claim a
sufficient signal-to-noise ratio to discern these peaks. They could not explain the appearance
of these new lines by the formation of stacking faults or other types of defects such as twinning,
but they claim that it could correspond to a distortion of the FCC lattice. The saw-tooth pattern
is consistent with a 14-layer superlattice structure. This transition was reversible as the pressure
was reduced, and was observed on a second x-ray diffraction machine. It is not evident that
these authors looked at more than one sample of Ir.

3.2. High-pressure phases

Transition metals usually exhibit crystal phase transitions between FCC, HCP and BCC (not
necessarily in this order). We therefore chose to study Ir in these crystallographic phases under
pressure using our first-principles total energy method. We use an energy cut-off for the plane
wave expansion of the wavefunctions of 50 Ryd. We consider one atom per cell for FCC and
BCC and two atoms per cell for HCP, and we choose a k-point sampling of the Brillouin zone
that is comparable for all three systems. We present our results for the energy per atom versus
volume per atom in figure 1. Clearly the BCC structure is inaccessible under pressure because
it is substantially higher in energy compared with FCC. The equilibrium lattice parameters for
HCP are calculated by varying both a and c independently: the equilibrium nearest neighbour
distance, a, is found to be 2.74 Å, and c is found to be 4.42 Å, with a c/a ratio of 1.62. The

HCP equilibrium volume per atom is 14.37 Å3, which is higher than the 14.27 Å
3

obtained for
FCC. The energy versus volume curves for FCC and HCP do not intersect at high pressure,
and so our calculations predict no transition to the HCP structure.

3.3. Planar defects

We wish now to study the planar defects of Ir under pressure. For a supercell structure
comprising N layers with periodic boundary conditions, there are ∼2N distinct configurations.
Among these configurations are the well known extrinsic (E), intrinsic (I) and twin (T) faults.
Clearly it is impossible to study all ∼2N defect structures using first-principles calculations.
Hence, in this subsection, we only consider a finite number of defect systems. In table 2 we list
the defect supercell structures that we considered, together with the energies of these systems
as a function of lattice constant. The atoms maintain close-packed coordination in the faulted
geometries and hence the relaxation energies are negligibly small [10].
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Figure 1. Energy versus volume for BCC, HCP and FCC phases of Iridium.

Table 2. Cubic fit to energy versus nearest neighbour distance, and bond-orientation parameters,
for various defect structures.

a0 a1 a2 a3 Bond-orientation parameters Supercell structures

87.608 1822 −115.598 58 21.137 3154 −1.283 052 87 6ε8(a) abcabc
99.039 8503 −122.348 853 22.472 3882 −1.371 334 44 6ε3(a) ababab
87.929 5048 −115.701 217 21.144 2002 −1.282 791 03 ε3(a) + 2ε4(a) + ε5(a) + 2ε6(a) ababac
87.676 9923 −115.603 458 21.132 4679 −1.282 403 07 2ε5(a) + 4ε7(a) abcbac

102.412 925 −134.898 875 24.653 8463 −1.495 788 76 2ε5(a) + ε6(a) + 2ε7(a) + 2ε8(a) abcbab

In the following subsection we use this data and apply a novel technique to calculate the
energies of all possible defects using a bond-orientation scheme.

3.4. Extracting the parameters for the bond-orientation model

The details of the bond-orientation model are found in [2]. In figure 2 we display the six distinct
local configurations in which any atom in this system may be found. From the cubic fits to
the energies of the bulk and defect structures, the εi(a) parameters are extracted by solving
the equations listed in table 2 simultaneously. All energies are referred to the FCC structure,
which effectively sets ε8(a) = 0. A hidden symmetry which exists in the system results in
a maximum of five linearly independent equations for the parameters. This is due to the fact
that only certain sequences of the εi (a) are possible, e.g. immediately following an ε8(a) local
geometry, there can only be an ε7(a). The energy of any defect structure may be calculated
from an appropriate combination of the εi (a). This is NOT a second-nearest neighbour model
but includes all interactions up to two planes above and below the plane in question . . . this
means that the model includes interactions beyond the second-nearest neighbour distance.

3.5. The bond-orientation model applied to the 14-atom supercell

In this subsection we study the planar defects of the 14-atom supercell to investigate the claims
of Cerenius et al [1] that a 14-layer superlattice structure exists for Ir for pressures in excess of
60 GPa. The cut-off of 50 Ryd obviously precludes us from studying all ∼214 defect structures.
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Figure 2. Energy parameters for different stacking sequences of (111) planes.

Here we extend the bond-orientation model [2] to include the energy dependence on volume
in order to be able to study the systems under pressure.

The expressions for the ideal structures in terms of the bond-orientation model parameters
εi (a) are:

E(FCC) = 14 × ε8(a) and E(HCP) = 14 × ε3(a). (1)

Since the εi (a) are functions of the nearest neighbour distance a, the energy of these systems
may be calculated as a function of the atomic volume.

For example, the twin stacking fault (T) whose structure in the 14-atom supercell is given
by CABCABCBACBACB may be expanded in the following way:

E(T) = 2 × ε5(a) + 4 × ε7(a) + 8 × ε8(a). (2)

In figure 3 we present energy versus nearest neighbour distance for all ∼214 defect structures in
the 14-atom supercell (with periodic boundary conditions). There are only 60 distinct curves
due to the high level of degeneracy. The energy of all the defect structures are bounded below
by the FCC curve, and above by the HCP curve. There is a relatively large energy jump between
the FCC curve and that for the lowest energy defect structure whose equilibrium volume is
slightly larger than that for FCC. There is no common tangent with a negative gradient that
links the FCC with any of the defect structures. Our model calculations show that these
defect structures are not more energetically favourable under pressure compared with FCC.
Our investigations hence show that FCC is very stable for pressures in the region of 60 GPa.

4. Stacking faults

Using our plane wave pseudopotential method, we calculate the stacking fault energies
of Ir. Firstly, we consider Ir in the FCC structure using a 12-atom supercell oriented along
the (111) direction with a choice of Monkhorst–Pack parameters for the k-point sampling
of (442). We also consider the HCP structure with the same supercell size and sampling of the
Brillouin zone.
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Figure 3. Energy versus nearest neighbour distance for all ∼214 defect structures in the 14-atom
supercell (with periodic boundary conditions). There are only 60 distinct curves due to the high
level of degeneracy.

Table 3. Supercell structure, best estimate of formation energy (EF ) in meV, and lower bound for
EF in meV.

Supercell EF Lower bound for EF

HCP 80 —
T 54 —
E 128 122
I 139 137

We consider the twin (T), the extrinsic (E) and intrinsic (I) stacking faults. The supercells
for each of these systems are listed below:

(T) . . . ABCABĊBACBAĊ . . .

(E) . . . ABCABĊBȦBCABC . . .

(I) . . . ABCABĊḂCABC . . . .

The dot in the above structures symbolizes those atomic planes that are locally HCP-like. The
T supercell has 12 atoms per cell and, as such, its energy may be compared directly with
that of the FCC supercell since they have an identical k-point sampling. Because of periodic
boundary conditions, the T supercell has two twin faults. In table 3 we list the energies of
these systems.

The E (13 atoms/supercell) and the I (11 atoms/supercell) supercells with enforced
periodic boundary conditions have a dissimilar number of atoms compared with the FCC
supercell. Therefore, the samplings of the Brillouin zone along the z direction are not identical.
Because the E supercell has a larger number of atomic planes than the FCC supercell in
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the z direction, we require a greater sampling of the Brillouin zone in this direction for the
FCC structure than for the E supercell if we wish the samplings of the Brillouin zone to be
comparable. We choose a k-point mesh of (442) for the E supercell, and initially compare
this energy with that of the FCC structure using a (443) mesh to give us a best estimate of
the formation energy of this stacking fault. We subsequently compare the energy for the
E supercell with that of FCC using a (442) mesh, in order to obtain a lower bound for the
formation energy. For similar reasons, we choose a k-point mesh of (443) for the I supercell,
and compare this energy with that of the FCC supercell using a (442) mesh. The lower bound
for the formation energy is found by comparing the energy of the I supercell with that of FCC
using a (442) mesh in both cases. These formation energies, together with the lower bound in
each case, are shown in table 3.

The energies for the faults are in qualitative agreement with simple bond-orientation
arguments. The T fault, which has only one HCP-like faulted plane, has an energy of 54 meV
which is comparable with the HCP energy of 80 meV. The E fault has an energy of 129 meV
which is roughly in proportion to the number of HCP-like planes. Finally, we calculate the
I fault to have an energy of 139 meV which is comparable to that of the E fault, as they have the
same number of faulted HCP-like planes. With the smaller system size, the I fault is slightly
more susceptible to finite size effects.

5. Conclusions

According to our theoretical computations, no exotic phase or superlattice structure exists for Ir
under pressure. A question remains as to whether relativistic effects will alter our conclusions:
our pseudopotential construction is based on a scalar-relativistic formulation and in this sense
the computations effectively take into account relativistic core–valence interactions. Explicit
inclusions of spin–orbit splittings in our work will have a negligible effect because of the
anticipated small corrections involved . . . of order millielectronvolts.

It is clear that further experimental investigations are needed in order to explore the
apparent high-pressure 14-layer superlattice structure of Ir observed by Cerenius et al [1].
However, it should be noted that our work assumes hydrostatic pressure, whereas in the actual
experiment huge uniaxial stresses could well develop. Under these circumstances, it is difficult
to predict what metastable structures could exist.

The bond-orientation model extended to describe systems under pressure is a convenient
and accurate means of computing the energies of planar defect structures.

Using first-principles methods, we have also calculated the stacking fault energies of Ir.
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